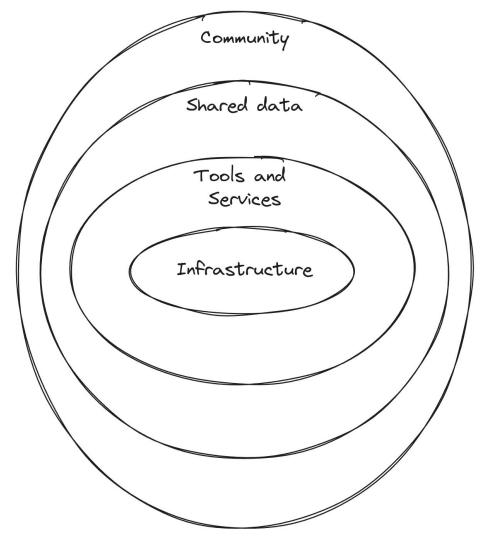


EBRAINS

digital infrastructure for brain research


FAIR data pro uživatele CF MAFIL: 14. 02. 2024

Jan Fousek

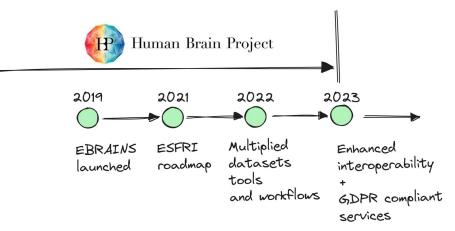
EBRAINS

Overview

- digital research infrastructure for neuroscience
- focus on collaborative open science
- integrated set of multiscale data, tools, IT resources, and collaborative environments

https://www.ebrains.eu

EBRAINS


Overview

- digital research infrastructure for neuroscience
- focus on collaborative open science
- integrated set of multiscale data, tools, IT resources, and collaborative environments

Origins

- developed within The Human Brain Project (10 years EU-Flagship)
- multidisciplinary effort centered around co-design principles

EBRAINS RI services

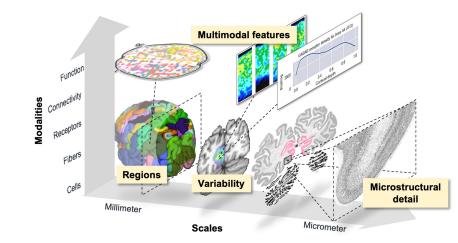
Data

• storage, sharing, and access to data, models, software and workflows

Brain atlases

• navigate, characterize, and analyze brain data based on anatomical location

Modeling, simulation and computing


• enable simulation studies from cellular to whole-brain level

Validation and inference

• analytic tools and model validation

Health research platforms

• GDPR-compliant tools to access medical brain data

The coming decade of digital brain research: https://zenodo.org/records/10035197

Data sharing process in EBRAINS

1. Submission

initial description of data sharing intent

2. **Review**

within 5 days

3. Acceptance

assigns curator

4. Integration

registering metadata in openMINDS format, data upload to long-term storage

5. **Publication**

DOI assigned, entry in the Knowledge Graph

6. **In-depth integration** continuous *post-publication metadata expansion*

Metadata description:

• openMINDS

open Metadata Initiative for Neuroscience Data Structures

- o (meta)data models
- predefined metadata schemas (ontologies)
- tooling (Python / MATLAB / BIDS)

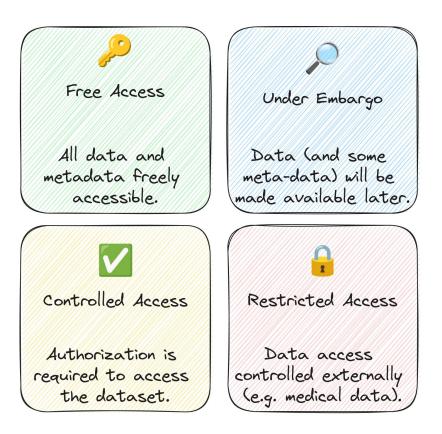
Find data on EBRAINS

Knowledge Graph search: https://search.kg.ebrains.eu/

Q Search (e.g. mous	e hippocamp	us or calbindin)	SEARCH		
CATEGORIES Project Dataset Model (Meta)Data Model	125 1032 253 del 4	Viewing 1-20 of 1032 results. Top trendmo The Swedish National Facility for Magnetoencephalography Parkinson's Disease Dataset Released : 2023-11-17		l prefrontal cortex and posterior parie de array recordings during local-globa anagiotaropoulos, T.	
Kineta Jaka Model Software Web service Contributor FILTERS	4 224 18 2152 Reset	Accessibility: controlled access Custodians: Lundqvist, D. Parkinson's disease (PD) is characterised by a loss of dopamine and dopaminergic cells. The conse are widespread network disturbances in brain function. It is still an ongoing topic of investigation how . brain dectrocardiography electrocoulography magnetic resonance imaging magnetoencephalogre motor behavior Movements Parkinson's disease	Overview Data descriptor How to cite Get data	DOI: 10.25493/CJ9N-6CZ Released: 2024-02-13 Accessibility: free access License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International	Studied brain region • prefrontal cortex • parietal cortex Behavioral protocols Local-global task (Be al., 2023)
ACCESSIBILITY free access under embargo controlled access	898 93 38	Top transing Julich-Brain Atlas, cytoarchitectonic maps Released: 2023-07-13	Publications Specimens How to use	This dataset features multiunit activity (MUA) recordings from two adult male macaque monkeys, captured via Utah arrays implanted in specific brain regions: the ventrolateral prefrontal cortex (VIPFC, area 45a) and the parietal cortex (VIPC, areas 7a/7b). The recordings were made as the monkeys engaged in a visual task, where they were required to maintain their qaze on a	Preparation : in vivo Experimental appro electrophysiology Technique : • visual stimulatio • abstract image stimulation

image sequence
 multi-unit activity

central fixation point while a sequence of images was displayed.

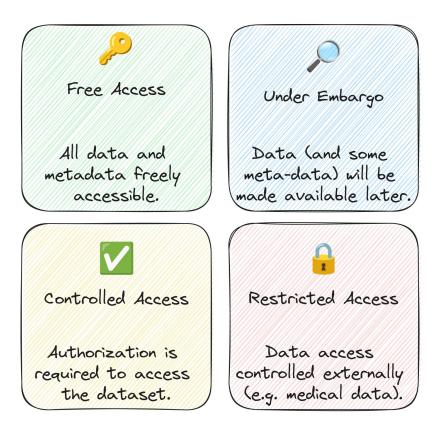

The primary aim of collecting this data was to investigate how

These images were presented within a 2×2 local-global design.

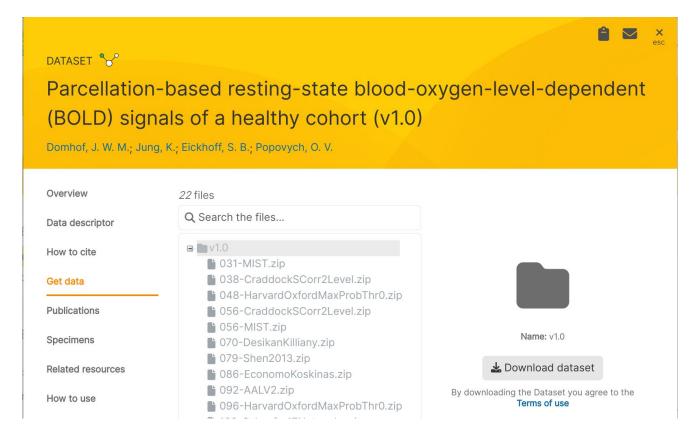
Data access in EBRAINS

- placement in a long-term repository
 requested during the curation process
- can be **hosted by EBRAINS** (data-proxy)
- **standardized repositories** (ModelDB) can also be linked from the KG
- external data hosting suitable also for sensitive data

Data access in EBRAINS

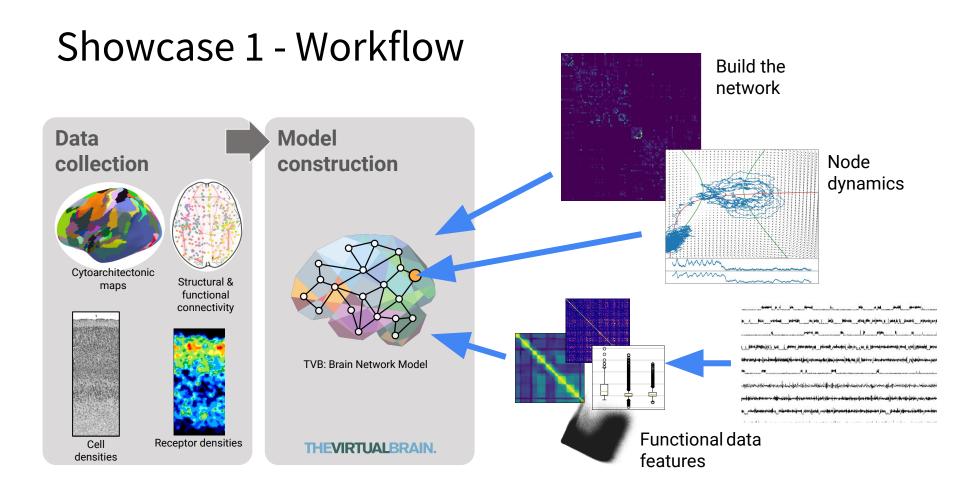

- placement in a long-term repository
 requested during the curation process
- can be **hosted by EBRAINS** (data-proxy)
- standardized repositories (ModelDB) can also be linked from the KG
- **external data hosting** suitable also for sensitive data

DATASET

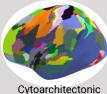

é 🖂

Human Connectome Project Young Adult fMRI time series, structural and functional connectomes (v1.0) Schirner, M.; Ritter, P.

- The data is currently shared via the Virtual Research Environment at **Charité Universitätsmedizin Berlin**.
- Please contact petra.ritter@bih-charite.de and michael.schirner@bih-charite.de for access.
- Data Processing Agreement for HCP Young Adult Connectomes can be found **here**

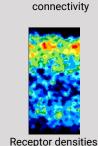


Data access in EBRAINS



Showcase 1 - Workflow

Build the network


Data collection

maps

Structural & functional

Model construction

MODEL

Previous

Overview

How to cite

Get model

Publications

Related resources

The Virtual Aging Brain (v1.0.0)

Lavanga, M.; Stumme, J.; Yalcinkaya, B. H.; Fousek, J.; Jockwitz, C.; Sheheitli, H.; Bittner, N.; Hashemi, M.; Petkoski, S.; Caspers, S.; Jirsa, V.

DOI: 10.25493/SVZE-Y7H

License: The MIT license

The Virtual Ageing Brain is a mechanistic model linking changes in structural connectivity and brain function to address the inter-individual variability in decline of cognitive abilities during healthy ageing. At the core of the VAB is a dynamical brain network model informed by individual brain imaging data (structural whole-brain connectivity), and a connectivity mask selecting interhemispheric connections is used to define the age-related changes to the structure. This model can be then

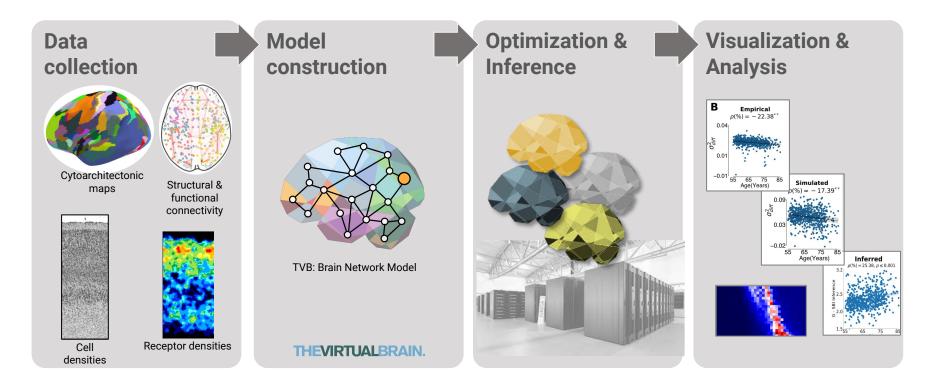
Custodians:
 Fousek, J.

 \sim

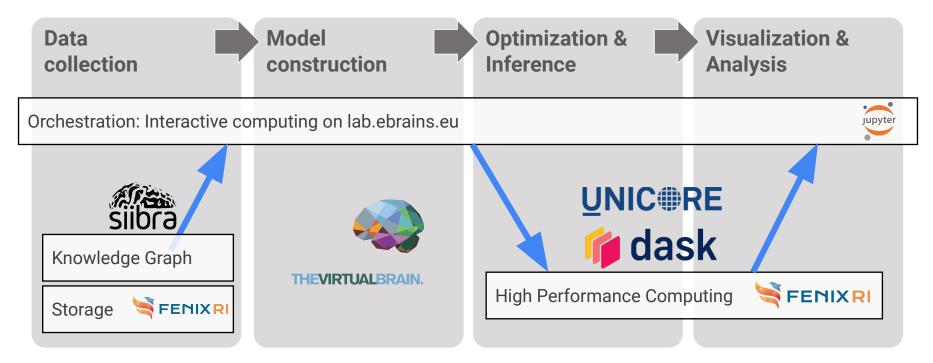
Study targets : Homo sapiens

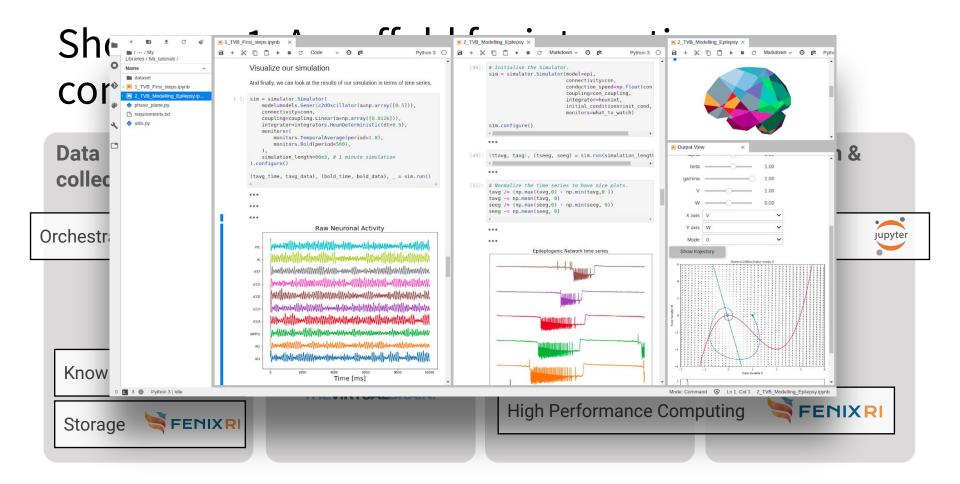
Model scope : network: whole brain

Abstraction level: population modelling: neural mass


THEVIRTUALBRAIN.

TVB: Brain Network


Functional data features


Showcase 1 - Workflow Optimizer Outer loop **Grid Search** Performance of model M **Optimization &** Model Data Simulation parameters collection construction Inference Performance Optimizee Inner loop calculation Simulation of the dynamics of the model Performance metric Cytoarchitectonic Structural & maps functional connectivity Posterio Prior TVB: Brain Network Model > Diagnostics pirical . . . 2.20 TVB inversion Receptor densities Cell THEVIRTUALBRAIN. densities

Showcase 1 - Workflow

Showcase 1: A scaffold for interactive computing with EBRAINS data & services

Thank you!

Photo by Michael Burgstahler, two tribes